3.694 \(\int \frac {\sec (c+d x) (A+C \sec ^2(c+d x))}{(a+b \sec (c+d x))^3} \, dx\)

Optimal. Leaf size=177 \[ \frac {\left (a^2 (2 A+C)+b^2 (A+2 C)\right ) \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{d (a-b)^{5/2} (a+b)^{5/2}}-\frac {a \left (a^2 (-C)+3 A b^2+4 b^2 C\right ) \tan (c+d x)}{2 b d \left (a^2-b^2\right )^2 (a+b \sec (c+d x))}-\frac {\left (a^2 C+A b^2\right ) \tan (c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^2} \]

[Out]

(a^2*(2*A+C)+b^2*(A+2*C))*arctanh((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/(a-b)^(5/2)/(a+b)^(5/2)/d-1/2*(A
*b^2+C*a^2)*tan(d*x+c)/b/(a^2-b^2)/d/(a+b*sec(d*x+c))^2-1/2*a*(3*A*b^2-C*a^2+4*C*b^2)*tan(d*x+c)/b/(a^2-b^2)^2
/d/(a+b*sec(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.32, antiderivative size = 177, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {4081, 4003, 12, 3831, 2659, 208} \[ \frac {\left (a^2 (2 A+C)+b^2 (A+2 C)\right ) \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{d (a-b)^{5/2} (a+b)^{5/2}}-\frac {a \left (a^2 (-C)+3 A b^2+4 b^2 C\right ) \tan (c+d x)}{2 b d \left (a^2-b^2\right )^2 (a+b \sec (c+d x))}-\frac {\left (a^2 C+A b^2\right ) \tan (c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^2} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^3,x]

[Out]

((a^2*(2*A + C) + b^2*(A + 2*C))*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(5/2)*(a + b)^(
5/2)*d) - ((A*b^2 + a^2*C)*Tan[c + d*x])/(2*b*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^2) - (a*(3*A*b^2 - a^2*C + 4*
b^2*C)*Tan[c + d*x])/(2*b*(a^2 - b^2)^2*d*(a + b*Sec[c + d*x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 3831

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a*Sin[e
 + f*x])/b), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4003

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[(a*A - b*B)*(m + 1) - (A*b - a*B
)*(m + 2)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] &
& LtQ[m, -1]

Rule 4081

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(
m_), x_Symbol] :> -Simp[((A*b^2 + a^2*C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2 - b^2)),
 x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[a*b*(A + C)*(m + 1) -
 (A*b^2 + a^2*C + b*(A*b + b*C)*(m + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && LtQ[m, -1
] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^3} \, dx &=-\frac {\left (A b^2+a^2 C\right ) \tan (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {\int \frac {\sec (c+d x) \left (-2 a b (A+C)+\left (A b^2-a^2 C+2 b^2 C\right ) \sec (c+d x)\right )}{(a+b \sec (c+d x))^2} \, dx}{2 b \left (a^2-b^2\right )}\\ &=-\frac {\left (A b^2+a^2 C\right ) \tan (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {a \left (3 A b^2-a^2 C+4 b^2 C\right ) \tan (c+d x)}{2 b \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}+\frac {\int \frac {b \left (a^2 (2 A+C)+b^2 (A+2 C)\right ) \sec (c+d x)}{a+b \sec (c+d x)} \, dx}{2 b \left (a^2-b^2\right )^2}\\ &=-\frac {\left (A b^2+a^2 C\right ) \tan (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {a \left (3 A b^2-a^2 C+4 b^2 C\right ) \tan (c+d x)}{2 b \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}+\frac {\left (a^2 (2 A+C)+b^2 (A+2 C)\right ) \int \frac {\sec (c+d x)}{a+b \sec (c+d x)} \, dx}{2 \left (a^2-b^2\right )^2}\\ &=-\frac {\left (A b^2+a^2 C\right ) \tan (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {a \left (3 A b^2-a^2 C+4 b^2 C\right ) \tan (c+d x)}{2 b \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}+\frac {\left (a^2 (2 A+C)+b^2 (A+2 C)\right ) \int \frac {1}{1+\frac {a \cos (c+d x)}{b}} \, dx}{2 b \left (a^2-b^2\right )^2}\\ &=-\frac {\left (A b^2+a^2 C\right ) \tan (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {a \left (3 A b^2-a^2 C+4 b^2 C\right ) \tan (c+d x)}{2 b \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}+\frac {\left (a^2 (2 A+C)+b^2 (A+2 C)\right ) \operatorname {Subst}\left (\int \frac {1}{1+\frac {a}{b}+\left (1-\frac {a}{b}\right ) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{b \left (a^2-b^2\right )^2 d}\\ &=\frac {\left (2 a^2 A+A b^2+a^2 C+2 b^2 C\right ) \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{(a-b)^{5/2} (a+b)^{5/2} d}-\frac {\left (A b^2+a^2 C\right ) \tan (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {a \left (3 A b^2-a^2 C+4 b^2 C\right ) \tan (c+d x)}{2 b \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 3.62, size = 342, normalized size = 1.93 \[ \frac {\sec (c+d x) (a \cos (c+d x)+b) \left (A+C \sec ^2(c+d x)\right ) \left (\frac {b \left (a^2+2 b^2\right ) \tan (c) \left (a^2 (4 A+3 C)-A b^2\right )+a \sec (c) \left (a b \left (A b^2-a^2 (4 A+3 C)\right ) \sin (c+2 d x)+\left (a^4 C+a^2 b^2 (5 A+2 C)-2 A b^4\right ) \sin (2 c+d x)+\sin (d x) \left (a^4 C-a^2 b^2 (11 A+10 C)+2 A b^4\right )\right )}{\left (a^3-a b^2\right )^2}-\frac {4 i (\cos (c)-i \sin (c)) \left (a^2 (2 A+C)+b^2 (A+2 C)\right ) (a \cos (c+d x)+b)^2 \tan ^{-1}\left (\frac {(\sin (c)+i \cos (c)) \left (\tan \left (\frac {d x}{2}\right ) (a \cos (c)-b)+a \sin (c)\right )}{\sqrt {a^2-b^2} \sqrt {(\cos (c)-i \sin (c))^2}}\right )}{\left (a^2-b^2\right )^{5/2} \sqrt {(\cos (c)-i \sin (c))^2}}\right )}{2 d (a+b \sec (c+d x))^3 (A \cos (2 (c+d x))+A+2 C)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sec[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^3,x]

[Out]

((b + a*Cos[c + d*x])*Sec[c + d*x]*(A + C*Sec[c + d*x]^2)*(((-4*I)*(a^2*(2*A + C) + b^2*(A + 2*C))*ArcTan[((I*
Cos[c] + Sin[c])*(a*Sin[c] + (-b + a*Cos[c])*Tan[(d*x)/2]))/(Sqrt[a^2 - b^2]*Sqrt[(Cos[c] - I*Sin[c])^2])]*(b
+ a*Cos[c + d*x])^2*(Cos[c] - I*Sin[c]))/((a^2 - b^2)^(5/2)*Sqrt[(Cos[c] - I*Sin[c])^2]) + (a*Sec[c]*((2*A*b^4
 + a^4*C - a^2*b^2*(11*A + 10*C))*Sin[d*x] + (-2*A*b^4 + a^4*C + a^2*b^2*(5*A + 2*C))*Sin[2*c + d*x] + a*b*(A*
b^2 - a^2*(4*A + 3*C))*Sin[c + 2*d*x]) + b*(a^2 + 2*b^2)*(-(A*b^2) + a^2*(4*A + 3*C))*Tan[c])/(a^3 - a*b^2)^2)
)/(2*d*(A + 2*C + A*Cos[2*(c + d*x)])*(a + b*Sec[c + d*x])^3)

________________________________________________________________________________________

fricas [B]  time = 0.57, size = 718, normalized size = 4.06 \[ \left [\frac {{\left ({\left (2 \, A + C\right )} a^{2} b^{2} + {\left (A + 2 \, C\right )} b^{4} + {\left ({\left (2 \, A + C\right )} a^{4} + {\left (A + 2 \, C\right )} a^{2} b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left ({\left (2 \, A + C\right )} a^{3} b + {\left (A + 2 \, C\right )} a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a^{2} - b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) - {\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {a^{2} - b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right ) + 2 \, {\left (C a^{5} - {\left (3 \, A + 5 \, C\right )} a^{3} b^{2} + {\left (3 \, A + 4 \, C\right )} a b^{4} - {\left ({\left (4 \, A + 3 \, C\right )} a^{4} b - {\left (5 \, A + 3 \, C\right )} a^{2} b^{3} + A b^{5}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{4 \, {\left ({\left (a^{8} - 3 \, a^{6} b^{2} + 3 \, a^{4} b^{4} - a^{2} b^{6}\right )} d \cos \left (d x + c\right )^{2} + 2 \, {\left (a^{7} b - 3 \, a^{5} b^{3} + 3 \, a^{3} b^{5} - a b^{7}\right )} d \cos \left (d x + c\right ) + {\left (a^{6} b^{2} - 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} - b^{8}\right )} d\right )}}, \frac {{\left ({\left (2 \, A + C\right )} a^{2} b^{2} + {\left (A + 2 \, C\right )} b^{4} + {\left ({\left (2 \, A + C\right )} a^{4} + {\left (A + 2 \, C\right )} a^{2} b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left ({\left (2 \, A + C\right )} a^{3} b + {\left (A + 2 \, C\right )} a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}} \arctan \left (-\frac {\sqrt {-a^{2} + b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right ) + {\left (C a^{5} - {\left (3 \, A + 5 \, C\right )} a^{3} b^{2} + {\left (3 \, A + 4 \, C\right )} a b^{4} - {\left ({\left (4 \, A + 3 \, C\right )} a^{4} b - {\left (5 \, A + 3 \, C\right )} a^{2} b^{3} + A b^{5}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{8} - 3 \, a^{6} b^{2} + 3 \, a^{4} b^{4} - a^{2} b^{6}\right )} d \cos \left (d x + c\right )^{2} + 2 \, {\left (a^{7} b - 3 \, a^{5} b^{3} + 3 \, a^{3} b^{5} - a b^{7}\right )} d \cos \left (d x + c\right ) + {\left (a^{6} b^{2} - 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} - b^{8}\right )} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

[1/4*(((2*A + C)*a^2*b^2 + (A + 2*C)*b^4 + ((2*A + C)*a^4 + (A + 2*C)*a^2*b^2)*cos(d*x + c)^2 + 2*((2*A + C)*a
^3*b + (A + 2*C)*a*b^3)*cos(d*x + c))*sqrt(a^2 - b^2)*log((2*a*b*cos(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^2 +
 2*sqrt(a^2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) +
 b^2)) + 2*(C*a^5 - (3*A + 5*C)*a^3*b^2 + (3*A + 4*C)*a*b^4 - ((4*A + 3*C)*a^4*b - (5*A + 3*C)*a^2*b^3 + A*b^5
)*cos(d*x + c))*sin(d*x + c))/((a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6)*d*cos(d*x + c)^2 + 2*(a^7*b - 3*a^5*b^3
 + 3*a^3*b^5 - a*b^7)*d*cos(d*x + c) + (a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*d), 1/2*(((2*A + C)*a^2*b^2 + (
A + 2*C)*b^4 + ((2*A + C)*a^4 + (A + 2*C)*a^2*b^2)*cos(d*x + c)^2 + 2*((2*A + C)*a^3*b + (A + 2*C)*a*b^3)*cos(
d*x + c))*sqrt(-a^2 + b^2)*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a)/((a^2 - b^2)*sin(d*x + c))) + (C*a^5
- (3*A + 5*C)*a^3*b^2 + (3*A + 4*C)*a*b^4 - ((4*A + 3*C)*a^4*b - (5*A + 3*C)*a^2*b^3 + A*b^5)*cos(d*x + c))*si
n(d*x + c))/((a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6)*d*cos(d*x + c)^2 + 2*(a^7*b - 3*a^5*b^3 + 3*a^3*b^5 - a*b
^7)*d*cos(d*x + c) + (a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*d)]

________________________________________________________________________________________

giac [B]  time = 0.37, size = 371, normalized size = 2.10 \[ \frac {\frac {{\left (2 \, A a^{2} + C a^{2} + A b^{2} + 2 \, C b^{2}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {-a^{2} + b^{2}}}\right )\right )}}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {-a^{2} + b^{2}}} + \frac {C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 4 \, A a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3 \, C a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 3 \, A a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 4 \, C a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - A b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 4 \, A a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3 \, C a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3 \, A a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 4 \, C a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + A b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a - b\right )}^{2}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^3,x, algorithm="giac")

[Out]

((2*A*a^2 + C*a^2 + A*b^2 + 2*C*b^2)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*
x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(-a^2 + b^2)))/((a^4 - 2*a^2*b^2 + b^4)*sqrt(-a^2 + b^2)) + (C*a^3*ta
n(1/2*d*x + 1/2*c)^3 + 4*A*a^2*b*tan(1/2*d*x + 1/2*c)^3 + 3*C*a^2*b*tan(1/2*d*x + 1/2*c)^3 - 3*A*a*b^2*tan(1/2
*d*x + 1/2*c)^3 - 4*C*a*b^2*tan(1/2*d*x + 1/2*c)^3 - A*b^3*tan(1/2*d*x + 1/2*c)^3 + C*a^3*tan(1/2*d*x + 1/2*c)
 - 4*A*a^2*b*tan(1/2*d*x + 1/2*c) - 3*C*a^2*b*tan(1/2*d*x + 1/2*c) - 3*A*a*b^2*tan(1/2*d*x + 1/2*c) - 4*C*a*b^
2*tan(1/2*d*x + 1/2*c) + A*b^3*tan(1/2*d*x + 1/2*c))/((a^4 - 2*a^2*b^2 + b^4)*(a*tan(1/2*d*x + 1/2*c)^2 - b*ta
n(1/2*d*x + 1/2*c)^2 - a - b)^2))/d

________________________________________________________________________________________

maple [A]  time = 0.65, size = 230, normalized size = 1.30 \[ \frac {-\frac {2 \left (-\frac {\left (4 A a b +A \,b^{2}+a^{2} C +4 C a b \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 \left (a -b \right ) \left (a^{2}+2 a b +b^{2}\right )}+\frac {\left (4 A a b -A \,b^{2}-a^{2} C +4 C a b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 \left (a +b \right ) \left (a^{2}-2 a b +b^{2}\right )}\right )}{\left (a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b -a -b \right )^{2}}+\frac {\left (2 a^{2} A +A \,b^{2}+a^{2} C +2 b^{2} C \right ) \arctanh \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{\left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^3,x)

[Out]

1/d*(-2*(-1/2*(4*A*a*b+A*b^2+C*a^2+4*C*a*b)/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3+1/2*(4*A*a*b-A*b^2-C*a^
2+4*C*a*b)/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c))/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b-a-b)^2+(2*
A*a^2+A*b^2+C*a^2+2*C*b^2)/(a^4-2*a^2*b^2+b^4)/((a-b)*(a+b))^(1/2)*arctanh(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+
b))^(1/2)))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a^2-4*b^2>0)', see `assume?`
 for more details)Is 4*a^2-4*b^2 positive or negative?

________________________________________________________________________________________

mupad [B]  time = 6.56, size = 241, normalized size = 1.36 \[ \frac {\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (A\,b^2+C\,a^2-4\,A\,a\,b-4\,C\,a\,b\right )}{\left (a+b\right )\,\left (a^2-2\,a\,b+b^2\right )}+\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (A\,b^2+C\,a^2+4\,A\,a\,b+4\,C\,a\,b\right )}{{\left (a+b\right )}^2\,\left (a-b\right )}}{d\,\left (2\,a\,b-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (2\,a^2-2\,b^2\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (a^2-2\,a\,b+b^2\right )+a^2+b^2\right )}+\frac {\mathrm {atanh}\left (\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (2\,a-2\,b\right )\,\left (a^2-2\,a\,b+b^2\right )}{2\,\sqrt {a+b}\,{\left (a-b\right )}^{5/2}}\right )\,\left (2\,A\,a^2+A\,b^2+C\,a^2+2\,C\,b^2\right )}{d\,{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + b/cos(c + d*x))^3),x)

[Out]

((tan(c/2 + (d*x)/2)*(A*b^2 + C*a^2 - 4*A*a*b - 4*C*a*b))/((a + b)*(a^2 - 2*a*b + b^2)) + (tan(c/2 + (d*x)/2)^
3*(A*b^2 + C*a^2 + 4*A*a*b + 4*C*a*b))/((a + b)^2*(a - b)))/(d*(2*a*b - tan(c/2 + (d*x)/2)^2*(2*a^2 - 2*b^2) +
 tan(c/2 + (d*x)/2)^4*(a^2 - 2*a*b + b^2) + a^2 + b^2)) + (atanh((tan(c/2 + (d*x)/2)*(2*a - 2*b)*(a^2 - 2*a*b
+ b^2))/(2*(a + b)^(1/2)*(a - b)^(5/2)))*(2*A*a^2 + A*b^2 + C*a^2 + 2*C*b^2))/(d*(a + b)^(5/2)*(a - b)^(5/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**3,x)

[Out]

Integral((A + C*sec(c + d*x)**2)*sec(c + d*x)/(a + b*sec(c + d*x))**3, x)

________________________________________________________________________________________